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Making use of numerical continuation techniques as well as bifurcation theory, 
both one- and two-dimensional travelling wave solutions of the ensemble-averaged 
equations of motion for gas and particles in fluidized beds have been computed. One- 
dimensional travelling wave solutions having only vertical structure emerge through a 
Hopf bifurcation of the uniform state and two-dimensional travelling wave solutions 
are born out of these one-dimensional waves. Fully developed two-dimensional 
solutions of high amplitude are reminiscent of bubbles. It is found that the qualitative 
features of the bifurcation diagram are not affected by changes in model parameters 
or the closures. An examination of the stability of one-dimensional travelling wave 
solutions to two-dimensional perturbations suggests that two-dimensional solutions 
emerge through a mechanism which is similar to the overturning instability analysed 
by Batchelor & Nitsche (1991). 

1. Introduction 
A uniform suspension of solid particles supported against gravity by an upward 

flowing fluid, an ideal fluidized bed, is rarely realized in practice. Instead, voidage 
non-uniformities are observed to move through the bed. In the case of gas-fluidized 
beds these voidage non-uniformities often take the form of ‘bubbles’ of almost clear 
gas. Jackson (1963a), Rgford & Baron (1965), Anderson & Jackson (1967, 1968), 
Garg & Pritchett (1975) and others modelled the fluidized bed using volume-averaged 
equations of continuity and motion, and analysed the linear stability of the state of 
uniform fluidization. It was found that the uniform state is always unstable to small 
disturbances in the absence of a term in the particle-phase momentum equation 
having the form of a pressure associated with the particle phase. 

The existence of voidage waves (in one space dimension) in fluidized beds has 
been explored previously by Anderson & Jackson (1968, 1969), El-Kaissy & Homsy 
(1976) and Homsy, El-Kaissy & Didwania (1980). This provided an incentive to 
understand the structure of the one-dimensional waves in greater detail, taking into 
consideration the nonlinear effects (Fanucci, Ness & Yen 1979, 1981; Liu 1982, 
1983; Needham & Merkin 1983, 1986; Foscolo & Gibilaro 1984, 1987; Ganser & 
Drew 1990). Fanucci et al. (1979) applied the method of characteristics to nonlinear 
equations describing two-phase flow in a gas-fluidized bed and showed that small 
disturbances can grow to form a discontinuity (two-phase shock). In a later paper 
(Fanucci et al. 1981) they examined the structure and stability of this shock. It was 
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shown that two-phase shocks have a limited range of shock propagation speeds. They 
suggested that the process of breakup of the one-dimensional unstable shocks should 
be identified with bubble development. Bouillard & Gidaspow (1991) examined the 
relationship between bubbles and one-dimensional voidage shocks and went on to 
examine the behaviour of the shocks for different particle sizes. Foscolo & Gibilaro 
(1984, 1987) performed both linear and nonlinear analyses of the one-dimensional 
waves and they formulated a hydrodynamic criterion for the onset of bubbling in 
fluidized beds. 

Needham & Merkin (1983, 1986) examined the time evolution of a localized 
one-dimensional voidage disturbance in an otherwise uniform gas-fluidized bed. It 
was shown that there is a one-parameter family of quasi-steady periodic states at 
each flow rate for which the uniform state is unstable. This family of quasi-steady 
periodic states, parametrized by their propagation velocity, was determined and it was 
found that the periodic states existed for a limited range of propagation velocities, in 
agreement with the earlier results of Fanucci et al. (1981). 

Didwania & Homsy (1982) examined a resonant sideband instability as a means 
of explaining the instability of a one-dimensional wave in a liquid-fluidized bed. 
Needham & Merkin (1984) carried out two-dimensional linear calculations and 
observed the appearance of mushroom-shaped regions of high voidage. Goz (1992) 
performed a two-dimensional bifurcation analysis of the equations looking at solutions 
of small amplitude. In particular, instabilities of the uniform state were rigorously 
characterized and small-amplitude two-dimensional patterns that could develop into 
bubble-like structures were discussed. Goz (1992. 1993b) conjectured that the one- 
dimensional plane travelling wave might undergo a transversal instability giving rise 
to a travelling wave with structure in both the vertical and lateral direction. Goz 
(1995a,b) went on to show that such an instability can in fact occur. In addition an 
extensive bifurcation analysis of vertically and obliquely travelling plane waves was 
carried out by Goz (19934. 

Batchelor & Nitsche (1991) examined the stability of a stationary unbounded 
stratified fluid of variable density. It was found that the fluid is unstable and there is 
an overturning instability which ’tilts’ the layers of stratified fluid. Since a dispersion 
of small particles in a fluid with non-uniform concentration behaves dynamically like 
a continuum with non-uniform density in certain circumstances, they suggested that 
their results might help explain the instability of a voidage wave with horizontal wave 
front in a fluidized bed. Batchelor (1993) went on to consider the secondary instability 
of a gas-fluidized bed and found that plane sinusoidal waves with horizontal wave 
fronts were unstable under practical conditions. 

Numerical integration of the volume-averaged equations of motion for gas-fluidized 
beds has revealed bubble-like structures (Pritchett, Blake & Garg 1978; Gidaspow, 
Syamlal & Seo 1986; Syamlal & O’Brien 1989; Kuipers, Prim & Van Swaaij 1991; 
Hernandez & Jimenez 1991 ; Anderson, Sundaresan & Jackson 1995.) Hernandez & 
Jimenez (199 1) described the evolution of spatially periodic two-dimensional solu- 
tions which result from a secondary instability of the planar vertical travelling wave 
in gas-fluidized beds. 

Anderson et al. (1995) integrated the ensemble-averaged equations of motion 
in two dimensions, assuming spatial periodicity. They found that two-dimensional 
disturbances in a gas-fluidized bed (200 pm glass beads fluidized by ambient air) 
developed bubble-like structures for all initial conditions considered. The behaviour 
of liquid-fluidized beds (1 pm glass beads fluidized by water) was markedly different. 
When a small two-dimensional disturbance was imposed on a fully developed planar 
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vertical travelling wave, a bubble-like hole was formed, only to be destroyed shortly 
afterwards. A small two-dimensional disturbance imposed on an unstable uniform 
state did not develop a bubble-like structure at any time during the course of their 
numerical integration. For both initial conditions, the solutions continued to change 
with time without appearing to settle down into any recognizable pattern. Further- 
more, the time-dependent spatial structures observed in these two cases revealed no 
identifiable similarity. 

While the study of Anderson et al. (1995) revealed that non-uniform structures 
in gas- and liquid-fluidized beds evolve differently, the extent of their investigation 
was limited. Transient integrations of the ensemble-averaged equations of motion 
were carried out for a small number of initial conditions and model parameters. In 
the liquid-fluidized bed case integration was not carried out long enough to identify 
the structure of a fully developed two-dimensional travelling wave. The results of 
Anderson et al. (1995) for the gas-fluidized bed suggest that there are stable two- 
dimensional solutions to the ensemble-averaged equations of motion. Their results 
also indicate that these solutions do not change as they move through the bed at 
constant velocity. 

In the present manuscript, a detailed computational analysis of fully developed one- 
and two-dimensional travelling wave solutions of the ensemble-averaged equations 
of motion has been carried out for conditions typical of gas-fluidized beds. We have 
only examined wave solutions which remain unchanged as they travel through the 
bed at constant velocity, but we will show that such an analysis is able to describe the 
instability of the one-dimensional waves and capture stable two-dimensional solutions 
that have bubble-like structure. 

We chose to focus first on gas-fluidized beds, since the results of Anderson et al. 
(1995) suggest that an analysis of fully developed steady (constant shape) travelling 
wave solutions should suffice for this case. Thcir rcsults also suggcst that the treatment 
of liquid-fluidized beds will be considerably more complex, requiring an examination 
of fully developed, both spatially and temporally oscillating travelling wave solutions. 

It will be shown that one-dimensional travelling wave solutions emerge through a 
Hopf bifurcation of the uniform state and that two-dimensional travelling waves are 
born out of these one-dimensional waves. It will also be seen that fully developed two- 
dimensional travelling wave solutions of high amplitude have bubble-like structure. 
The robustness of these structures will be established by exploring the effect of 
changes in model parameters and closures. 

2. Equations of motion 
Ensemble-averaged (or volume-averaged) equations of motion for the fluid and 

particle phases in fluid-particle suspensions have been described extensively in the 
literature, for example, see Anderson & Jackson (1967), Drew (1971), Drew & Segel 
(1971), Hinch (1977), Nigmatulin (1979), Joseph & Lundgren (1990), and Zhang 
& Prosperetti (1994). Averaged equations have been explicitly or implicitly used 
by many previous researchers to model the flow in fluidized beds (for example, 
see Jackson 1 9 6 3 ~ ;  Anderson & Jackson 1967; Garg & Pritchett 1975; Homsy 
et al. 1980; Anderson et al. 1995). The equations used in this work are those 
proposed by Anderson & Jackson (1967). Assuming an incompressible fluid and 
defining the following averaged variables: v the solids velocity, u the fluid veloc- 
ity, 4 the volume fraction of solids, 0, the solid-phase stress tensor, crf the fluid- 
phase stress tensor, the equations of continuity and motion for the solid and fluid 
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a4 
- at + v * [4v] = 0, 

+V"(l-$)u] =0,  a(1- 4 )  
at 

p s 4  - +V.VV = - V . a ,  - 4V.0, + nf + 4 p s g ,  (3) 

(4) 

[:; ] 
pf(1-4)  [! - + U . V U  ] = - ( l - @ ) V - a f  - n f +  ( 1 - 4 ) p f g ,  

where n is the number of particles per unit volume, f is the average drag force exerted 
on a particle by the fluid due to the relative velocity of the phases and g is the specific 
gravity force vector. In the present study a Newtonian form is assumed for the fluid- 
and solid-phase stress tensors, 

0, = p,I - p, [vv + (VU)' - $7 - v )  I ] , 

bj = p f l  - pf [VU + - $7 - .)I ] , (6) 

( 5 )  

where pf, the effective viscosity of the fluid, was assumed to be equal to pf, the 
viscosity of the fluid itself. The fluid pressure, p f ,  is determined dynamically since 
we have assumed the fluid to be incompressible. The particle-phase pressure, pa, 
and effective particle-phase viscosity, pClb, need to be determined empirically or from 
modelling considerations. The functional forms and origin of these interactions have 
been the subject of some debate in the literature (Buyevich 1972; Garg & Pritchett 
1975; Foscolo & Gibilaro 1984, 1987; Batchelor 1988; Mutsers & Rietema 1977; 
Rietema & Piepers 1990). For the moment the precise forms for p s  and ps are not 
crucial for our analysis so we will take p s  to be a monotonically increasing function 
of 4, 

Ps = 8(4 ) ,  g ' ( 4 )  > 0, 
and the effective particle-phase viscosity will be taken to be a (non-zero) constant or 
monotonically increasing function of 4, 

ps = h(4), h'(4)  2 0. 

The drag force per unit volume, nf, is given by bed expansion measurements or drag 
coefficient correlations and the following form is adopted: 

(7) n f  = (1 - 4)P (4,  In - 4) [U - vl 

with 9 > O  
84 

where p is also a monotonically increasing function of 4. This formulation does not 
take into account virtual mass effects which would be expected to be negligible for 
gas-fluidized beds. 

With the above closures there is an equilibrium solution to (l), (2) (3) and (4) which 
represents uniform fluidized beds of infinite extent, with 

4 = 4 0  ; v = 0 ; u = j u o  ; VP = [ps4 + Pf(1 - 4)lg ; puo - 4o(ps - pf)g = 0, 
where j is the unit vector in the y-direction pointing vertically upward and $0 and uo 
are constants. The linear stability of this solution against small, spatially periodic one- 
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and two-dimensional disturbances has been examined by many researchers (Jackson 
1963a; Murray 1965; Pigford & Baron 1965; Mutsers & Rietema 1977; Liu 1982; 
Foscolo & Gibilaro 1984; Batchelor 1988; Hernandez & Jimbnez 1991). When 40 
is smaller than some critical value, #c, the state of uniform fluidization is linearly 
unstable and the fastest growing disturbance is an upward travelling wave with no 
horizontal structure. The wave takes the form of alternating bands of high and low 
voidage, which move upwards through the bed (see $3). 

If the contribution of the solid-phase stress is not taken into account (see Jackson 
1963a) then small disturbances to the uniformly fluidized bed are always linearly 
unstable. As recognized by Garg & Pritchett (1975) the addition to the particle-phase 
momentum equation of a force proportional to the spatial gradient of the particle 
concentration will stabilize the uniform bed, provided the force is directed from 
regions of high 4 to low 4 and the force is large enough. The particle-phase pressure 
provides such a force in this formulation. Since the functional form of p s  is still a 
subject of debate we have considered a number of different functional forms. The 
function we have adopted for the bulk of our work is 

which is chosen to match a form used by Hernandez & Jimenez (1991) in calculating 
bubble development; it represents a pressure which increases from zero when 4 = 0 
and diverges as the solids fraction tends to the random close-packed value, 4p. It has 
been argued by Buyevich (1972) that for dilute beds (4  + 0) the particle pressure 
should be proportional to 43, which is reflected in (8). This equation contains two 
constants C1 and r ,  which permit the magnitude and slope of p s ,  and hence the critical 
volume fraction g5c for limiting stability to be adjusted (as will be discussed later). 
The value of 4, is taken to be 0.65 (Berryman 1982). 

In order to investigate the sensitivity of the results to changes in the closure for ps ,  
we considered a different closure relation, namely 

Such a relation was employed by Johnson & Jackson (1987) in their study of 
granular shear flow. We analysed two cases corresponding to (ml = 1,m2 = 0) and 
(m1 = 1,m2 = 2). The first case describing a linear variation of p s  with # has been 
analysed by several researchers (for example, see Needham & Merkin 1983, 1984, 
1986). Note that this closure lacks the physics required to constrain the value of 4 to 
remain below 4p in the travelling wave solutions. The second case (rnl = l,m2 = 2) 
contains this restriction and represents a particle pressure which is proportional to 
4 for small 4. The ps-closures analysed in many previous studies (Needham & 
Merkin 1984; Foscolo & Gibilaro 1987; Batchelor 1988; Koch 1990) reduce to a 
linear variation of p s  with 4 as 4 + 0. It can easily be shown that such a linear 
dependence will give rise to a region of stable uniform fluidization for sufficiently 
small 4. On the other hand, the closure given by (8) does not yield this region of 
stable uniform fluidization at the dilute limit. To the best of our knowledge, the 
existence of a stable uniform fluidized bed at the dilute end or its absence has not 
been demonstrated in any experimental study. We will demonstrate in this paper 
that the bifurcation diagrams, for dense fluidized beds, obtained with these different 
ps-closures are qualitatively similar. 
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The dependence of the particle-phase effective viscosity on 4 is taken to have the 
form 

which also increases from zero when 4 = 0 and diverges as the solids fraction tends 
to #+,. The choice of a value for the parameter A permits the length scale of the 
dominant instability of the uniform state to be adjusted. We have also considered the 
effect of setting ,us to a constant value (independent of 4). 

The drag coefficient p is usually correlated to the Reynolds number 

2a c't Pf R, = ~ 

Pf 

for a particle at its terminal velocity of fall under gravity, z j t .  The quantity a is the 
particle radius. At low values of R, the drag coefficient is independent of the relative 
velocity of the particle and fluid phases and a convenient form for a fluidized bed 
is 

which is the well known Richardson-Zaki (1954) relation with exponent n depending 
on R,. For most of the work we have carried out, the value of R, is 20, but 
for all of our results Rt does not exceed 50. This is certainly not a low enough 
Reynolds number to say that the drag coefficient, p, is independent of 1u - 81, but 
it is low enough to say that contributions from ju - V I  to p will be small. This 
can be verified by considering a drag correlation such as the Ergun equation (Ergun 
1952). Considering the simple forms we have adopted for p ,  and p s  we will make 
use of (11) to approximate the drag force. The terminal velocity is calculated using 
empirical correlations from Kunii & Levenspiel (1991). The forms for p s ,  p3 and 

given in (X), (10) and (11) are those we will initially consider and were those 
adopted by Anderson et al. (1995) in their numerical simulation of flow in a fluidized 
bed. 

Although it is straightforward to cast the equations of motion in a dimensionless 
form, the most appropriate characteristic length and time for the present problem 
is not fully understood. This has been recognized by Anderson & Jackson (1968), 
Garg & Pritchett (1975), Foscolo & Gibilaro (1987) and Kuipers et aI. (1991), who 
have simply presented their results in terms of dimensional quantities. We note at the 
outset that the key features of the bifurcation diagrams described here do not depend 
on the choice of characteristic density, length and time, and that the results could 
have been presented in a dimensional form. However, we will non-dimensionalize the 
problem using 

as characteristic density, velocity, length and time, respectively, and present our results 
in terms of dimensionless variables. The particular choice of characteristic length is 
motivated by the linear stability analysis of the uniform state (see Liu 1982). With 
this choice of characteristic scales, the following dimensionless groups are obtained : 

6 = pf /ps ,  density ratio, 
y = &/A, viscosity ratio, 
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coefficient, 

One can readily define a Reynolds number and a Froude number in terms of 
characteristic scales: 

and for the specific choice of L employed in our study, R = F = 52. The advantage 
of this choice of length scale is discussed later ($7). 

We limit the scope of the present study to an analysis of the solution structure 
for dense beds of infinite extent and seek fully developed, spatially periodic solutions 
propagating vertically at constant speed. Furthermore, we restrict our attention to 
conditions representative of gas-fluidized beds where 6 << 1 and y << 1. In work on 
gas-fluidized beds the additional simplification of 6 = 0 and y = 0 has been proposed 
quite often, which translates to discarding the inertial terms on the left-hand side 
of (4) and neglecting the deviatoric stresses in the fluid phase. Goz (1992) discusses 
how such a simplification could change the bifurcation scenario. We will therefore 
not carry out this simplification but will examine if doing so does in fact change our 
results. 

Nominal values of model parameters used in our study are listed in table 1. They 
correspond to 200 pm diameter glass beads fluidized by air at ambient conditions. 
The constants C1 and r for particle pressure affect the value of the critical volume 
fraction $(, and for the chosen values one obtains 4c = 0.576. The corresponding 
dimensionless quantities are also included in this table. We will initially fix the 
volume fraction of solids in the bed at a value just below the critical value and 
examine instabilities and solutions for this case; the chosen value is 4" = 0.57. 
Subsequently, we will examine the effect of varying the mean volume fraction of 
particles in the bed. The parameter A in the solids viscosity, ,us, is taken to be 0.5 P, 
which yields a value of ,u: = 6.65 P evaluated at 4" = 0.57. This value is in the right 
range suggested by experiments. Model parameters shown in the second column of 
table 1,  corresponding to 300 pm diameter glass beads, will be used at a later stage 
to show the effect of particle size on the bifurcation diagram. 

The results of a linear stability analysis of the uniform state are illustrated in 
figure 1 where the real part of the complex growth rate of the disturbance is plotted 
against the vertical wavenumber k,. The horizontal wavenumber, k,, is zero for all the 
curves. For 40 > 4' = 0.576 the uniform state is stable for all vertical wavenumbers. 
If 40 < 4c , the uniform state is unstable for a range of k,  values, but is stable for 
large values of k,.  As $0 decreases, the range of k, values for which the uniform state 
is unstable increases (at least in the vicinity of 4cj, For all k,  values, the growth rate 
is complex, indicating that the instability is a travelling wave (not shown). 

For the purpose of our bifurcation analysis, it is convenient to summarize the 
linear stability results as follows. For a given value of 4o < $<, as one decreases 
k ,  from a large value where the uniform solution is expected to be stable, a pair 
of complex-conjugate eigenvalues cross the imaginary axis at some critical k,, value. 
This Hopf bifurcation signals the birth of a new family of travelling wave solutions 
away from the uniform state. The value of this critical y-wavenumber where the 
Hopf bifurcation occurs depends on $", but nut on the size of the periodic box in the 



190 B. J.  Glasser, 1. G. Kevrekidis and S. Sundaresan 

2.2 g cmp3 2.2 g Ps 
0.0013 g cmP3 Pf 

a 100 pm 150 pm 
vt 142 cm s-' 231 cm s-' 

0.592 4i. 0.576 
40 0.57 0.586 
A 0.5 P 0.5 P 
Ps(40) 6.65 P 8.63 P 
CI 1.08 Pa 1.08 Pa 
r 0.3 0.3 
L 0.182 cm 0.231 cm 
T 0.00128 s 0.00100 s 
Rt 20 50 
n 4.35 4.00 
s 0.000591 0.000591 
Y 0.000363 0.000363 
z 0.000242 0.0000917 
sz 113.7 235.2 

TABLE 1. Values of parameters and dimensionless groups for gas-fluidized beds. First column, 200 
pm diameter glass beads; second column, 300 pm diameter. 

0.0013 g cm-' 
Pf 0.0181 CP 0.0181 CP 

4 P  0.65 0.65 

k.v 
FIGURE 1. Linear stability of the uniform state. Real part of the (complex) growth rate as a 

function of k,  for various values of $0. k, = 0. 

horizontal direction, since the family of solutions emerging at this Hopf bifurcation 
consists of one-dimensional waves with variations only in the y-direction. We will 
refer to these one-dimensional travelling wave solutions as 1D-TWs and compute 
them numerically as described below. 
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3. One-dimensional travelling waves 
Every ID-TW is characterized by two parameters, namely, 40 and k,. Most of 

the discussion presented in this paper will be concerned with the family of 1D-TWs 
generated by holding 40 constant and allowing k,  to vary. The usual procedure 
to compute these 1D-TWs involves a continuation scheme starting from a known 
solution which is often the Hopf bifurcation point. Each 1D-TW will have its own 
wave speed, c, which needs to be aetermined as a part of the solution. Although 
this 1D-TW will appear as a time-dependent solution when viewed from an arbitrary 
frame of reference, it will be seen as a steady solution from an inertial frame moving 
at the speed of the wave. We therefore make a change of variables to a coordinate 
system in the travelling wave frame, 

Y=y-cct,  t = t ,  (12) 

and seek steady solutions in this coordinate system, along with the unknown wave 
speed c. We approximate all the variables with a full Fourier series in this moving 
frame. Accordingly, an expansion of the type 

N 

@,(Y,t) = h:(t) + [a f ( t )  sin(nYk,) + b!(t) cos(nYk,)] for 8 = 4, j?, vc, uy 
n = l  

(13) 
is used to represent the volume fraction of particles, the spatially periodic component 
of the fluid pressure, p, and the (y-component of the) velocities of both the particulate 
and fluid phases in the moving frame. This gives us periodicity in the y-direction, 
with period 271/ky for 4, j3, u,, and uy. Although all the Fourier coefficients have been 
shown in the above equations as time-dependent, they will become independent of 
time provided the speed c in (12) is indeed the wave speed and the wave is fully 
developed and steady. 

We now substitute the above Fourier expansion for all the variables into the 
continuity and momentum equations and form the inner product of the resulting 
equations with each of the 2N + 1 Fourier basis functions. The integrals are evaluated 
numerically through the use of the inverse discrete Fourier transform. This type of 
pseudospectral discretization procedure together with its convergence properties is 
discussed in detail by Canuto et al. (1988). In order to reduce aliasing errors for the 
nonlinear terms we use a discrete Fourier transform with 2L + 1 rather than 2N + 1 
points where L > N .  In all the results reported here, we have used L = 5N.  The choice 
of such a large value for L is due to the nonlinearities in the model equations and the 
sharp profiles we have computed. The convergence of the resulting approximation to 
the true solution of the model equations is tested by examining the dependence of 
the approximate solution on N .  This pseudospectral approach produces a system of 
differential and algebraic equations for the various Fourier coefficients. A number of 
observations can be made immediately. 
(i) It can be seen from the solids-phase continuity equation that 

where b$ is 
expected as 
the average 
at all times. 

defined in (13) and is applied to particle volume fraction. This is to be 
the imposition of periodic boundary conditions will necessarily constrain 
value of particle volume fraction in the cell, i.e. bf is equal to a constant 
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1 , I /  

0 0.1 0.2 0.3 0.4 0.5 0.6 

k.. 
FIGURE 2. Bifurcation diagram for one-dimensional travelling waves. Volume fraction of solids 
norm, IlA411, versus k, for various values of b0: the uniform state (- - -), unstable 1D-TW 
(- - -), stable 1D-TW (-). 

(ii) bg cannot be determined uniquely. This is not surprising as only gradients in 
pressure appear in the momentum equations. With no loss of generality, we set b; to 
be zero. 
(iii) The mean solids velocity and mean gas velocity are given by b;(t) and b:(t) 
respectively, as defined in (13) (for a frame of reference moving vertically at some 
velocity c). It turns out that only (b:(t) - b:(t)) can be determined uniquely. This is 
hardly surprising, as it is well known that we can add any arbitrary, constant velocity 
to both gas and solids velocity in an unconfined fluidized bed without affecting the 
overall solution (due to the Galilean invariance of the equations). This makes it 
necessary that we choose one frame of reference for the purpose of our discussions. 
Accordingly, we deJine the laboratory frame as one in which the average flux of 
particles is zero: 

where the vertical velocity of the particles, v,,, is measured from the laboratory frame 
(and 1, = 27c/k, is the dimensionless wavelength in the y-direction). The velocity of 
the wave, c, referred to earlier is measured from this (laboratory) frame. Further 
mathematical details can be found elsewhere (Glasser 1995). 

Figure 2 shows the particle volume fraction norm, lIA4II, as a function of k,  for 
three different values of 40. Here l[A+\/ is based on the Lz norm of the Fourier 
coefficients and is defined by 

This gives a measure of the amplitude of the solution with respect to the uniform 
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state. The mean solids volume fraction, bt(= &,), is not included in the norm so that 
solutions of different 4o can be compared. In figurc 2 the base (uniform) state is 
represented by the dot-dashed line llA,II = 0. 

Consider first solutions with 40 = 0.57. Point A in figure 2 corresponds to point 
A in figure 1 which was previously identified as a Hopf bifurcation point in the 
laboratory frame. When viewed from a moving frame which is travelling at the wave 
speed, a real eigenvalue will cross the imaginary axis at point A. The 1D-TW denoted 
by the branch APQRS (in figure 2) was computed using the steady-state part of the 
continuation package, AUTO (Doedel, Keller & Kernevez 199 l), modified to account 
for the unknown speed, c. The modification involves adding an equation, which is 
used to determine the wave speed, and also eliminates the translational invariance 
of the solution in the wave frame. Our particular implementation of the inflation of 
the system of equations within the framework of AUTO is discussed by Brown & 
Kevrekidis (1995). 

Plots of 4 versus scaled height, Y * ( =  Yky/271), in the travelling wave frame for 
1D-TWs corresponding to points A, P, Q and S in figure 2 are shown in figure 3. The 
number of Fourier modes, N ,  (see (13)) used to represent each of the wave solutions, 
is given in the caption to figure 3. This is the minimum number of modes needed 
to accurately represent the solution. Small-amplitude solutions (such as curves A 
and P in figure 3) are nearly sinusoidal as one would expect. As we decrease the 
y-wavenumber (i.e. consider boxes of larger vertical dimension) the wave increases in 
amplitude and steepens (see curve Q in figure 3). It can be seen from figure 1 that 
the largest growth rate for $o = 0.57 is predicted by the linear stability analysis to 
occur at k, = 0.373. The wave corresponding to this particular value of k ,  is given 
by curve Q in figure 3. Note that as k4 decreases the @-profile becomes increasingly 
asymmetric as predicted and discussed previously by Fanucci et al. (1981), Ganser & 
Drew (1990), Goz (1993a,b), Dankworth & Sundaresan (1991), and Anderson et al. 
(1995). 

We mention in passing that other bifurcations which are replications of the initial 
bifurcation are also possible on the uniform branch. Thus, for example, a family of 
travelling waves bifurcates out of the uniform state at point C (in figure 2) whose 
y-wavenumber is one-half of that of point A. This family of travelling waves will 
havc two humps within one periodic cell and each of these humps will correspond 
exactly with a wave with twice the value of k ,  (emerging from point A). Similarly a 
three-humped wave is possible at one-third of the original wavenumber and so on. 
The solutions on these branches with multiple humps are initially unstable and will 
therefore not be discussed further here. 

Let us now consider solutions in figure 2 which correspond to 40 = 0.575. A family 
of 1D-TWs emerge from point B which corresponds to B in figure 1. The 1D-TW 
branch for this $0 value bifurcates from the uniform state in a subcritical fashion. 
This branch subsequently turns around and gains stability. It is important to spell out 
what is meant by stability in the present context. One-dimensional travelling waves, 
corresponding to points on the llA411 us. k, curve shown in figure 2, indicated by solid 
curves are stable to small one-dimensional (i.e. y-variation only) disturbances which 
retain the same periodicity as the wave itself, and have wavenumber larger than or 
equal to the wavenumber of the wave. The segments shown by dashed lines in this 
figure are unstable to such disturbances. It is interesting to note that, in every system 
examined in our study, the 1D-TW branch came off subcritically for $0 values that 
are just below $ J ~  and it subsequently turned around and stabilized. This subcritical 
behaviour was noted by Ganser & Drew (1990), but they were not able to verify that 
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4 
FIGURE 3. One-dimensional travelling waves corresponding to points A, P, Q and S in figure 2. 
Y' = Yk,/27c. (A) k,  = 0.573, N = 4 modes. (P) k,  = 0.561, N = 6 modes. (Q) k ,  = 0.373, N = 10 
modes. (S) kJ, = 0.182, N = 45 modes. Curve (A) corresponds to a point on the 1D-TW branch 
very close to point A in figure 2. 

the branch turned around. As seen from the curve APQR, this subcritical behaviour 
is not observed at lower values of 40. When a subcritical bifurcation is followed by 
a turning point, it is seen that a stable, high-amplitude 1D-TW coexists with a stable 
uniform state for a range of ky values. 

It is clear from figure 2 that as we increase $0 the bifurcation of 1D-TWs from the 
uniform state occurs at smaller and smaller k, values. When 4 0  = & this bifurcation 
occurs at k, = 0, as discussed in detail by Goz (1993a). It can be anticipated from 
figure 2 that this bifurcation at k, = 0 for = 4c will be initially subcritical followed 
by a turning point. It can be inferred from this pattern of bifurcation diagrams that 
one-dimensional travelling wave solutions are possible for some +,, values greater 
than &. This is illustrated in figure 2 by the curve corresponding to $0 = 0.581. 
This family of 1D-TWs does not emerge through a bifurcation from the uniform 
state; instead, it is present as an isolated branch of solutions. Stable 1D-TWs in 
this locus will be achieved when a disturbance of sufficiently high amplitude and 
appropriate periodicity is imposed on the uniform state and the wave is allowed to 
evolve (Dankworth & Sundaresan 1991 ; Anderson et al. 1995). 

4. Mathematical preliminaries for two-dimensional solutions 
It has been already pointed out in the literature (Dankworth & Sundaresan 1991; 

Anderson et al. 1995) that the one-dimensional travelling waves obtained in the 
cases of gas- and liquid-fluidized beds are qualitatively similar. Therefore, one must 
investigate the structure of two-dimensional travelling waves in order to seek an 
explanation for the qualitative difference seen in the evolution of unsteady structures 
in gas- and liquid-fluidized beds (Anderson et at. 1995). The remainder of this paper 
will be devoted to two-dimensional travelling waves in gas-fluidized beds. When 
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spatial variations are permitted to occur in two dimensions, the equations permit 
both vertically travelling waves and oblique travelling waves (Goz 1992,1993a). It is 
clear from the past experimental studies that it must be possible to make a distinction 
between the gas- and liquid-fluidized beds purely on the basis of vertically travelling 
waves. Indeed, numerical integration of the transient continuity and momentum 
equations for the two phases carried out by Anderson et al. (1995) reveal fundamental 
differences between the gas- and liquid-fluidized beds even when attention is restricted 
to vertically travelling waves with two-dimensional structure. Accordingly, we will also 
restrict attention to vertically travelling waves. It will be seen shortly that the vertically 
travelling waves with two-dimensional structure (henceforth two-dimensional vertical 
travelling waves, or simply 2D-TWs) which we compute are fully developed and 
move at constant speed. Therefore, it is convenient to view these 2D-TU's from a 
coordinate system in the travelling wave frame by substituting 

x = x ,  Y = y - c t ,  t = t  (15) 

and computing them as steady solutions in this coordinate system. This is analogous 
to what we described earlier in the context of 1D-TWs. 

A general Fourier series approximation for any variable which is periodic in both 
x and Y can be written as follows: 

N 

n=l  

~r N 1 

{a!,,(t) sin(nYk,) + b;,,,(t) cos(nYk,)} 
m= 1 

~r N 1 

+ 1 l:,,(t) + 1 {cr].,(t) sin(nYk,) + d;,,Jt) cos(nYk,)} sin(mxk,). (16) 
m= 1 n = l  

The first group of terms on the right-hand side of the above equation corresponds 
exactly to the group considered earlier in the context of one-dimensional travelling 
waves. The second and third groups of terms corresponding to cos(mxkx) and 
sin(mxk,) respectively, then determine the transverse structure. We suppress the 
oblique travelling waves in this paper by discarding the third group of terms in our 
approximation for the volume fraction of particles, the y-component of the velocities 
of both the solid and fluid phases, and the spatially periodic component of the fluid- 
phase pressure, and by retaining only the third group of terms in our approximation 
for the x-component of the fluid and solid phase velocities. 

The issue of the laboratory frame will come up once again (see earlier discussion 
in the context of one-dimensional waves). Retaining the same definition of the 
laboratory frame as before, we set 

Qs = lx $(x, y ,  t )  vY(x,  y, t )  dx dy = 0 
1x1, 

where the velocity, v,, of the particle phase is measured from the laboratory frame. 
The dimensionless wavelengths in the y- and x-directions are given by ly (= 27c/k,) 
and E x  (= 2n/k,) respectively. 

A system of differential and algebraic equations for the Fourier coefficients is 
obtained following the same procedure discussed earlier for one-dimensional waves. 
Although all the Fourier coefficients have been written as time-dependent quantities 
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FIGURE 4. Linear stability of fully developed one-dimensional travelling waves, for 40 = 0.57. 
Dimensionless growth rate as a function of k,. (A) k ,  = 0.573, (P) k), = 0.561, (Q) k ,  = 0.373, (S) 
k ,  = 0.182. The 1D-TWs corresponding to curves (A), (P), (Q) and (S) are shown in figure 3. 

(see (16)), they will again be independent of time if the speed of the travelling frame 
in (15) is indeed the wave speed and if the wave is fully developed and steady. 

5. Stability of 1D-TWs to two-dimensional perturbations 
The one-dimensional travelling waves with horizontal wave fronts, described earlier, 

are a special case of the solutions with two-dimensional structure and they exist for 
every value of k,.  Therefore it is natural to start our investigation with an analysis 
of the linear stability of a 1D-TW to small disturbances which possess the same 
y-periodicity as the 1D-TN' itself and are also periodic in the x-direction. Such a 
disturbance is obtained from the second or third group of terms in (16) (which, as 
discussed earlier, depends on the variable x) by setting M = 1. 

The results of such a linear stability analysis are illustrated in figure 4 where the 
growth rate of the disturbance is plotted against k,, for four different 1D-TWs. These 
1D-TWs correspond to four different values of k,, ,  but all of them belong to the same 
($* = 0.57) family. Curve P in figure 4 with k ,  = 0.561 corresponds to point P in 
figure 2. (The corresponding 1D-TW is shown in figure 3.) It can be seen from figure 
4 that this 1D-TW is stable for large values of k,, as it should be. As we decrease k,, 
loss of stability occurs at point j where one real eigenvalue crosses zero and becomes 
positive (if we view the lD-TW from a frame of reference travelling at the speed of 
the wave). This signals the birth of a new family of travelling wave solutions which, 
unlike the 1D-TWs, will possess two-dimensional structure. It will be shown later 
that these travelling waves (which we labelled earlier as 2D-TWs) include bubble-like 
solutions. 

Note that as we decrease k ,  past point j, the growth rate increases at first reaching 
a maximum at point f and then decreases to zero as k ,  + 0. The growth rates 
corresponding to curves Q and S in figure 4 pertain to 1D-TWs at points Q and S 
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in figure 2. (The corresponding 1D-TWs are shown in figure 3.) Curve A in figure 4 
corresponds to a 1D-TW of so small an amplitude that it can be captured accurately 
with a single Fourier mode in the y-direction. This 1D-TW with a k,. of 0.573 is 
located very close to point A in figure 2. In every curve shown in figure 4, the loss 
of stability of the 1D-TW is associated with a real eigenvalue crossing zero. It is 
therefore clear that the transverse instability of the 1D-TWs is a robust feature. 

The eigenfunctions corresponding to the most unstable eigenvalues for the four 
1D-TWs (marked by points e, f, g and h in figure 4) are presented in figures 5 to 
8. In each of these figures, the spatial variation of $ in the corresponding 1D-TW 
is shown as panel (a) in order to facilitate our discussion of the eigenfunctions. 
The eigenfunctions associated with particle volume fraction, fluid-phase velocity and 
particle-phase velocity are shown as panels (b) ,  (c) and ( d ) ,  respectively. Each of these 
panels displays spatial variation over one periodic cell of height 27c/k,> and width 
271/k,. Even though the ratio of the vertical to lateral wavenumbers is n.ot unity, the 
eigenfunctions are plotted in a square box and the scaling is obvious. 

It is clear from figure 5(b) that in the case of a 1D-TW with a very small amplitude 
the $-perturbation is cellular with equally spaced contours and shades of grey. Figure 
6(b)  associated with a somewhat higher-amplitude 1D-TW reveals slight asymmetry 
in the y-direction. It is seen in figures 5(c)  and 6(c) that perturbations in the fluid 
velocity fields have their major component in the vertical direction, so these assume the 
form of alternating columns of upward and downward moving fluid which change 
direction every half wavelength in the x-direction. The x-component of the fluid 
velocity perturbation is very small compared to that in the y-direction. The character 
of the perturbations in the particle-phase velocity fields, shown in figures 5 ( d )  and 
6(d), is similar to that of the fluid phase. 

The eigenfunctions corresponding to 1D-TWs of higher amplitude are shown in 
figures 7 and 8. It is apparent from figures 7(b) and 8(b)  that the $-perturbations 
are now asymmetric (in the y-direction) and are confined to regions of low $ in 
the 1D-TWs. It can also be seen from figures 5(b) to 8(b) that the regions where 
the $-perturbation has most structure (i.e. largest variations in $) in the vertical 
direction, correspond to regions where the 1D-TW has the most variation in $. The 
lateral components of the perturbations in the fluid and solid velocity fields increase 
progressively as the amplitude of the 1D-TW increases. 

So far we have discussed only the eigenfunctions for the lateral wavenumber corre- 
sponding to the maximum growth rate. It is instructive to examine the eigenfunction 
for a particular 1D-TW as the lateral wavenumber is changed. An inspection of 
the cigenfunctions describing $-perturbations as we move along curve P in figure 
4 rcveals that their ‘phase’ changes progressively. (Here phase of an eigenfunction 
refers to a shift in the eigenfunction up or down relative to the 1D-TW.) The effect 
of this phase change is illustrated in figure 9 which shows two $-structures obtained 
by adding a small amount of the $-perturbation to the 1D-TW (curve P in figure 3). 
The $-structures are plotted in a square box, even though the ratio of the vertical to 
lateral wavenumbers is not unity. Figures 9(a) and 9(b) correspond to points f and j, 
respectively, in figure 4. The ‘buckling’ type of structure presented in figure 9(a) has 
been analysed previously by Batchelor & Nitsche (1991) and Batchelor (1993). Figure 
9(b) shows that another type of structure, namely bulging, is also possible. 

It was pointed out by Anderson et al. (1995) that the relative magnitudes of 
the growth rates of the disturbances leading to 1D-TWs from the uniform state 
and 2D-TWs from the 1D-TWs is an important consideration in distinguishing 
bubbling and non-bubbling systems. It is seen from figure 1 that the fastest growing 
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FIGURE 5. Eigenfunctions corresponding to maximum growth rate (point e) of curve (A) in figure 
4. k,  = 0.573,kX = 0.015. N = 4,M = 1. (a) The corresponding one-dimensional travelling wave, 
height versus volume fraction of solids (see figure 3 for quantitative information). The broken 
line shows the mean volume fraction of solids, 40 = 0.57. (6) Grey-scale plot of the eigenfunction 
corresponding to the volume fraction of solids. The increments between shades of grey are equal. (c) 
Vector plot of gas-velocity eigenfunction. ( d )  Vector plot of solids-velocity eigenfunction. Although 
the eigenfunctions are shown in a square box, the actual periodic box has unequal k, and k,. 

disturbance away from the uniform state, $o = 0.57, corresponds to ky = 0.373 and 
its dimensionless growth rate is 0.00128. Linear stability analysis of a 1D-TW with 
k ,  = 0.373 reveals that two-dimensional structures will evolve from this wave at 
a maximum growth rate of 0.00333 (point g in figure 4). These two growth rates 
(0.00128 and 0.00333) are of the same order of magnitude. 

6. Two-dimensional travelling waves 
Figure 10 shows the volume fraction norm, liA411, as a function of k , ,  where we 

have set k ,  = k , .  Included in this figure are the uniform state (depicted by the 
line IIAdI) = 0), the 1D-TW branch (curve APQR), and the 2D-TW branch (curve 
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FIGURE 6. Eigenfunctions corresponding to maximum growth rate (point f )  of curve (P) in figure 4. 
k,  = 0.561, k ,  = 0.078. N = 6, M = 1. See figure 5 for description. 

0 

QLMNO). Here IIA&II is defined as 

and as discussed before, b&(= &), is not included in the norm so that solutions of 
different $0 can be compared. 

The 1D-TW branch (APQR in figure 10) is initially stable (for decreasing kJ,). As 
we follow the solutions on this branch in the wave frame, one real eigenvalue passes 
through zero at point Q. In the wave frame, this is a stationary bifurcation, more 
specifically a pitchfork bifurcation, and the two branches that are born represent the 
same state with a phase shift of n / k x  in the x-direction. Both these solutions have 
identical IIA&j, so they cannot be differentiated in figure 10. From a physical point 
of view these solutions are one and the same, so we will not differentiate between 
the two. The new branch that is born, QLMNO, comes off the 1D-TW branch 
subcritically and is initially unstable. It turns around and gains stability shortly after 
point L. The solutions on this new branch have a two-dimensional structure and 
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FIGURE 7. Eigenfunctions corresponding to maximum growth rate (point g) of curve (Q) in 
figure 4. k,  = 0.373,kX = 0.138. N = 10,M = 1. See figure 5 for description. 

still travel vertically up through the bed at constant wave speeds. Therefore, it is 
indeed appropriate to refer to them as two-dimensional travelling waves (2D-TWs). 
Examination of a solution on the 2D-TW branch just past the bifurcation point Q 
reveals the bulging of the 1D-TW solution (at Q) in the lateral direction. This can be 
seen in figure 11 plotted in the wave frame. The number of Fourier modes, N ,  M (see 
(16)) used to represent the wave solution is given in the caption to the figure. The 
$-structure shown in figure l l(a) is similar to that in figure 9(b). The streamlines for 
the solid and gas phases show minimal departure from the vertical trajectories of the 
1D-TW. Figure 12 shows a higher-amplitude 2D-TW solution which corresponds to 
point L in figure 10. The solid-phase streamlines are still nearly vertical (and pointing 
down) while a bending of the gas streamlines around the 'hole' (the region of low 
volume fraction of solids) is now clearly visible. 

The solution at point M, which is further along the 2D-TW branch, and beyond 
the turning point in figure 10, is shown in figure 13. An increase in the amplitude 
of the $-structure (i.e. a deeper hole), the appearance of a recirculation pattern in 
the gas streamlines and the slight bending of the particle-phase streamlines around 
the hole are now evident. These features become more and more prominent as we 
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FIGURE 8. Eigenfunctions corresponding to maximum growth rate (point h) of curve (S) in 
figure 4. ky  = 0.182,kX = 0.213. N = 45, M = 1. See figure 5 for description. 

move up along the 2D-TW branch to point N and then to point 0 (see figures 14 
and 15). Notice that the lowest value of 4 seen in the periodic box steadily decreases 
as we move up along the 2D-TW branch. It seems reasonable to conclude that if 
we continue further up this branch we will see a bubble with little or no solids in 
it. Although we have calculated 2D-TW solutions up to k ,  = k ,  = 0.182 (with N 
= 27 and M = 16) where the volume fraction of solids inside the hole drops down 
to 0.05, the resolution of this wave is not entirely satisfactory. Therefore we will 
not present this calculation. The problem with calculating solutions as k,(= k,) is 
decreased is that more and more Fourier modes are needed to accurately represent 
the solution. The number of Fourier modes that we can use is limited by the extent 
of our computational resources. Structures that are obtained with an inadequate 
number of Fourier modes have oscillations on the length scale of the highest Fourier 
modes and clearly have not converged to the true solution. 

The velocities of the travelling wave solutions (in figure 10) relative to the laboratory 
frame are presented in figure 16 as curves PQR (for the 1D-TW) and QLMNO (for 
the 2D-TW). As the amplitude of the ID-TW increases, the wave velocity increases 
rapidly at first and then it levels off. The velocity of the 2D-TWs decreases at first 
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FIGURE 9. Grey-scale plot of volume fraction of solids obtained by adding a small amount of the 
unstable 4-eigenfunction to the 1D-TW solution. The 1D-TW has k ,  = 0.561, and is shown as curve 
(P) in figure 3. (a) k, = 0.078. N = 6,M = 1. Eigenfunction is shown in figure 6. ( h )  k, = 0.182. 
N = 6,M = 1. Eigenfunction is not shown. Numbers on the legend refer to the minimum and 
maximum value of 4. The increments between shades of grey are equal. 
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(in the subcritical region); but this trend reverses past the turning point and the wave 
velocity continues to rise as the amplitude increases. It can be seen from figure 16 
that wave velocity generally increases as k , ( =  k,) decreases. 

A few additional observations can be made from figure 15. Note that the hole in 
this figure has a diffuse roof and a rather sharp floor. The presence of a diffuse roof 
has been predicted previously (Jackson 1963b; Anderson et al. 1995) and observed 
experimentally (Lockett & Harrison 1967; Nguyen, Leung & Weiland 1973; Yates, 
Cheesman & Sergeev 1994). Yates et al. (1994) also found that the wake was a 
region of lower particle concentration, in contrast with the $-plot in figure 15. Also, 
the shape of the hole in this figure is not consistent with bubble shapes observed 
in two-dimensional fluidized beds. In particular, the typical upward bulge of the 
floor of the bubble seen in experiments is not observed. We will return to this point 
later on. The centre of the vortex lies somewhat above the region of lowest particle 
concentration (see figures 15a and 15b) as is observed experimentally. 

In order to investigate the effect of the aspect ratio of the box on the 2D-TW 
solutions, we performed continuations for various fixed lateral wavenumbers. The 
volume fraction norm, IIA6 11, is shown as a function of k,  in figure 17, where we have 
kept k ,  constant at 0.182. It is this choice of k ,  which distinguishes this figure from 
figure 10 discussed earlier. The uniform state and the 1D-TW in this figure are the 
same as those in figure 10. The 2D-TWs are different as a result of the difference 
in the choice of k,. In figure 17, the 2D-TW branch comes off supercritically from 
the 1D-TW branch at point P. This 2D-TW branch quickly turns around and loses 
stability. Another turning point is encountered at point X where the 2D-TW branch 
regains stability. The solutions (in particular, the +structure and the gas-phase 
streamlines) corresponding to four different points (T, U, V and W) on the 2D-TW 
branch (of figure 17) are presented in figure 18. The aspect ratio of each periodic box 
shown in these figures retains the correct k , / k ,  ratio. The evolution of the $-structure 
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FIGURE 10. Bifurcation diagram showing the uniform state and one- and two-dimensional travelling 
wave solutions. $0 = 0.57. k ,  = k y .  The solid curves indicate stable branches. The broken curves 
indicate unstable branches. P,Q and R on the 1D-TW branch correspond to their namesakes in 
figure 2. 

as one moves along the 2D-TW branch is similar to that seen earlier in figures 11 
to 15. The fluid streamlines in figure 18, however, reveal an interesting difference 
which is worth noting. The shapes of the gas streamlines shown in figures 18(b) 
and 18(d) are qualitatively similar to those seen earlier in figures 12(b) and 14(b). 
In both figures 14(b) and 18(d), one can see two stagnation points located on the 
centreline. In figure 14(b), the stagnation point above the hole is far away from the 
stagnation point below the hole from the periodic box above. As a result, there is 
very little interaction between these two holes, as evidenced by the nearly vertical 
streamlines between them. In contrast, one can readily appreciate the interaction 
between the two holes in figure 18(d). On moving further up the 2D-TW branch in 
figure 17, the two holes interact more strongly (see figure IS#. The two stagnation 
points originally located on the centreline have now collided and moved apart in the 
transverse direction. The gas streamline along the centreline in figure 18y) is pointing 
upward everywhere, which is qualitatively different from the structure in figure 18(d). 
As we move further up in the 2D-TW branch (which is tantamount to increasing the 
y-dimension of the periodic cell), the stagnation points retrace their path and return 
to the centreline (figure 18h). We have verified that interaction of the type displayed 
in figure 1 8 0  is not unique to k, = 0.182. Such an interaction between stagnation 
points is known to be a precursor to bubble-bubble interactions (Clift et al. 1972). 

The shape of a deep hole in a square periodic box is roughly circular as can be 
seen in figure 15(a) . When the aspect ratio of the periodic box is not unity a dcep 
hole remains roughly circular as can be seen in figure 18(g). Thus it appears that 
while the shape of shallow holes reflects the aspect ratio of the box, the deep holes 
select a fairly circular shape, independent of this aspect ratio. The size of the hole is 
influenced more strongly by the smaller of the two dimensions of the periodic box. 

The possibility of coexistence of stable solutions of different structure can be seen in 
figure 10 which shows that 1D-TWs and 2D-TWs can coexist over a range of k ,  values. 
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FIGURE 1 1. Two-dimensional travelling wave solution, near (indistinguishable from) point Q in 
figure 10. k, = k ,  = 0.379. N = 7 , M  = 5. (a)  Volume fraction of solids. ( h )  Streamline plot of gas 
vclocity. ( c )  Streamline plot of solids velocity. 

In figure 17 such coexistence is also seen and a low-amplitude and a high-amplitude 
2D-TW coexist over a narrow range of k ,  values. Perhaps the most interesting feature 
is the coexistence of a stable uniform state and a stable high-amplitude 2D-TW for 
some k, values. 

As mentioned earlier, the 2D-TW branch comes off the 1D-TW branch subcritically 
in figure 10, but supercritically in figure 17. We have computed the bifurcation 
diagrams for several different values of k, and found that, when k ,  is held constant 
at a small value, the 2D-TW comes off supercritically from the 1D-TW. However, for 
larger values of k,, this bifurcation occurs subcritically. For example, the bifurcation 
diagram for k ,  = 0.364 is similar to figure 10. Thus the character of the initial 
bifurcation of the 2D-TW branch from the 1D-TW branch is strongly dependent on 
the choice of parameters. However, thc presence of stable, high-amplitude 2D-TW 
solutions is a robust phenomenon. 

A number of other bifurcations occur on the uniform branch, and we have 
already referred to multi-peaked 1D-TWs. There are also bifurcating solutions which 
immediately possess both vertical and lateral structure. These solutions, referred to 
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FIGURE 12. Two-dimensional travelling wave solution corresponding to point L of figure 10. 
k ,  = k ,  = 0.406. N = 7 , M  = 5. (a)  Volume fraction of solids. (b)  Streamline plot of gas velocity. 
(c) Streamline plot of solids velocity. 

as standing travelling waves by Goz (1992), are born unstable at their respective 
bifurcation points. We have carried out continuations of such branches (see Glasser 
1995) but the solutions have remained unstable (for the cases we examined) and 
consequently we will not describe them here. We have computed bifurcation diagrams 
such as figure 10 for several other values of q50. We simply note that figures 10 and 
17 are quite typical of what we found. 

Figures 19(a) and 19(b) show diagrams obtained by using $0 as the bifurcation 
parameter. Figure 19(a) corresponds to k, = 0.364 and k ,  = 0.182, while for figure 
19(b) k ,  = k ,  = 0.182. Let us consider figure 19(a) first. As one decreases q50, 
the uniform state loses stability at point A and a 1D-TW is born at this point. 
This 1D-TW branch is shown by the curve ACFD. The wave speed of the ID-TW 
decreases as the mean volume fraction in the bed decreases (i.e. as one moves from 
C to D). The 1D-TW branch loses stability at point C and a 2D-TW branch emerges 
subcritically from this point. This 2D-TW branch subsequently turns around at E and 
stabilizes. This bifurcation diagram is similar to figure 17, although the bifurcation 
parameter is different. As was seen for the solutions on the 1D-TW branch the wave 
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FIGURE 13. Two-dimensional travelling wave solution corresponding to point M of figure 10. 
k ,  = k ,  = 0.400. N = 9, M = 7. (a)  Volume fraction of solids. (b)  Streamline plot of gas velocity. 
( c )  Streamline plot of solids velocity. Note: all streamlines in this figure and later figures should 
connect. Those streamlines that suggest spirals or disconnected segments are artifacts of our plotting 
routine. 

speed of solutions on the 2D-TW branch decreases as the mean volume fraction in 
the bed decreases. Point W in figure 19(a) corresponds to its namesake in figure 17 
and the wave is shown in figures 18(g) and 18(h). The coexistence of different types 
of solutions is seen in figure 19(a). Note that high-amplitude 2D-TWs are possible 
even for 40 > 4c. In other words, even when the uniform state is linearly stable to 
perturbations of all length scales there can still exist stable 2D-TWs. Figure 19(b) is 
analogous to figure 10. Point N in figure 19(b) corresponds to its namesake in figures 
10 and 16, and the wave is shown in figure 14. 

7. Robustness of the bifurcation diagrams 
Our discussion thus far has focused on a single system (200 pm diameter glass beads 

in air) and specific closures for p s  and p3. It is important to check the robustness of 
the bifurcation diagram by considering different gas-particle systems as well as other 
closures. This is particularly important as bubbles are formed easily in gas-fluidized 
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FIGURE 14. Two-dimensional travelling wave solution corresponding to point N of figure 10. 
k,  = k ,  = 0.364. N = 18,M = 10. ( a )  Volume fraction of solids. (b)  Streamline plot of gas velocity. 
(c) Streamline plot of solids velocity. 

beds and therefore the ability to observe them in mathematical models should not be 
restricted to a specific set of speculative closures or parameters. 

We carried out a large series of numerical experiments by changing the model 
parameters and the closures, and found the bifurcation diagram to be robust in 
the following sense: the 1D-TWs having only vertical structure emerge through a 
Hopf bifurcation of an unstable uniform state and the 2D-TWs are born out of 
these 1D-TWs. The high-amplitude 2D-TWs resemble bubbles in fluidized beds. The 
specific choice of closure influences the shape of the travelling wave solutions. Model 
parameters and choice of closures affect whether the bifurcations occur supercritically 
or subcritically. 

As 6 << 1 (the density of the particles is much larger than that of the gas) one can 
anticipate that discarding the inertial terms on the left-hand side of (4) will have a 
negligible effect on the bifurcation diagram. We have indeed verified this, and found 
that the bifurcation diagrams obtained (using parameters in the first column of table 
1) with and without the fluid-phase inertial terms are nearly identical. In a similar 
fashion we found that neglecting the deviatoric stresses in the fluid phase (by setting y 
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FIGURE 15. Two-dimensional travelling wave solution corresponding to point 0 of figure 10. 
k, = k ,  = 0.246. N = 36, M = 24. (a) Volume fraction of solids. ( 6 )  Streamline plot of gas velocity. 
(c) Streamline plot of solids velocity. 

equal to zero which is equivalent to setting ,iif equal to zero in (6)) had no discernible 
effect on the bifurcation diagram. 

The dimensionless groups or parameters, 6, y ,  52, CI and n appear in our model 
and we have investigated the effect of Q, CI and n on the bifurcation diagrams for 
6 << 0 and y << 0. Although the results have been presented in this paper in a 
dimensionless form we noted earlier that the question of an appropriate scaling for 
the present problem is a difficult one. For this reason we will discuss the effect of 
model parameters on the bifurcation diagram in both dimensional and dimensionless 
forms. This will demonstrate our earlier claim that the key features of the bifurcation 
diagrams do not depend on the choice of characteristic scales for the problem. 

The effect of particle-phase viscosity on the bifurcation diagram was examined by 
varying A over 2 orders of magnitude. An analysis of the linear stability of the uniform 
state reveals that the dimensional vertical wavenumber at the Hopf bifurcation, LHB: 
is proportional to {ps($o))1’2 (or equivalently to A1/2). Our choice of characteristic 
length scale captures this dependence. This is also true for the scaling adopted by 
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FIGURE 16. Dimensionless wave speed of one- and two-dimensional travelling waves. 40 = 0.57. 
k,  = k, .  The labelled points correspond to their namesakes in figure 10. The solid curve indicates 
stable solutions. The broken curve indicates unstable solutions. 
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FIGURE 17. Bifurcation diagram for fixed lateral wavenumber, k ,  = 0.182. 4 0  = 0.57. Points P, Q 

and R on the 1D-TW branch correspond to their namesakes in figure 2. 

Ganser & Drew (1990), who explicitly chose L H ~  as the characteristic length. Their 
approach, however, is only valid for $0 < 4c and the length scale depends on the 
value of $0 adopted. We chose our length scale to be independent of 40 as we wanted 
to investigate the solution structure for a range of 4 0  values, including cases where 
4 0  > $c and the uniform state is linearly stable. 
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FIGURE 18. Two-dimensional travelling wave solutions corresponding to points T. U, V and W in 
figure 17. On the left are grcy-scale plots of volume fraction of solids and on the right are the 
corresponding streamline plots of gas velocity. Stagnation points of saddle typc are marked 0. 

(a), ( b )  ky = 0.677,kY = 0.182, point T. N = 9, M = 7. (c), (d )  k, = 0.628.k, = 0.182, point U. 
N=9,M=7. (e) ,V)k ,=0 .533 ,k ,=0 .182 ,poin tV.N=l0 ,M=8. (g) , (h)ky=0.364,k ,=0 .182 ,  
point W. N = 24, M = 16. 

In a dimensionless formulation varying the magnitude of the particle-phase viscosity 
is equivalent to changing Q, while holding all other parameters constant. (Although 
y depends on the magnitude of the particle-phase viscosity, this has a negligible effect 
because y << 1). We found that the qualitative features of the bifurcation diagram 
were not affected for a change in !2 spanning an order of magnitude. 

We have also examined the effect of setting p A  to a constant value (independent 
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FIGURE 19. Bifurcation diagrams with 4o as the parameter. (a)  k, = 0.364,k, = 0.182. Point W 
corresponds to its namesake in figure 17. ( b )  k,  = k ,  = 0.364. Point N corresponds to its namesake 
in figure 10. 

of $), namely pA = 13.3A = 6.65 P, which can be obtained by setting $ = $0 = 0.57 
in (10) with A = 0.5 P. The bifurcation diagram shown in figure 20 (for constant ps) 
corresponds to the conditions of figure 10 (for $-dependent p,). These two bifurcation 
diagrams are qualitatively similar. On the 2D-TW branch (CEF in figure 20), we 
initially see the same development of lateral structure as seen earlier in figure 10. 
Figure 21(a) corresponding to a point on the 2D-TW branch next to point C in figure 
20 is similar to figure l l (a)  described earlier. The $-structure at point E in figure 
20 is shown in figure 21(b). The voidage hole in this case has a semi-circular shape, 
which differs from those shown in figures 12(a), 13(a) and 14(a). Figure 22 presents 
the solution corresponding to point F in figure 20. Some concavity has developed 
in the floor of the voidage hole and the shape of this hole has a strong resemblance 
to bubbles observed in fluidized beds. The circulation pattern in  the gas (figure 22b) 
is displaced forward relative to the centre of the voidage hole. These results are 
encouraging, as it is now clear that small changes in the closure relations can produce 
realistic shapes for voidage holes. 

The effect of particle pressure has also been investigated by changing both the 
magnitude of p s  and the closures adopted. For the closure in (8) we have considered 
different values of C ,  spanning an order of magnitude. Increasing C1 (which is 
equivalent to increasing the dimensionless particle pressure coefficient, a, while holding 
all other dimensionless groups constant) increases and thus ‘shifts’ the bifurcation 
diagram in $0. This can be illustrated by expressing the structure of the 1D-TWS 
shown in figure 2 in a more general form as follows. When $o is slightly less than $ c ,  
the 1D-TWs emerge from the uniform state through a subcritical Hopf bifurcation. 
As qA - $0 increases, this changes to a supercritical bifurcation. When $0 = & the 
Hopf bifurcation point coincides with the origin. For 4 0  slightly larger than &, the 
1D-TWs exist as an isolated branch. The 2D-TWs in turn bifurcate from the 1D-TWs 
as discussed in $6, 

In order to investigate the sensitivity of the results to changes in the closure for p s ,  
we repeated our calculations using the closure relation in (9) with (nil = 1,mz = 0) 
and (ml = 1,mz = 2). In both cases, the value of the coefficient CZ was so chosen 
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FIGURE 20. Bifurcation diagram for constant solids viscosity. ps = 13.3.4 = 6.65 P = constant, 
independent of 4. 4 0  = 0.57. k, = ky .  Model parameters and dimensionless groups are presented in 
table 1. 

that ps  computed from (9) at + = $0 = 0.57 was the same as that given by (8). 
The value of the solids viscosity was kept constant at p, = 13.3A = 6.65 P. The 
bifurcation diagrams computed with these two cases are illustrated in figure 23. In 
both cases, 1D-TWs emerge from the uniform state and 2D-TWs bifurcate from the 
1D-TWs. The first case (m1 = 1,m2 = 0) describes a linear variation of pF with + and 
for the chosen parameters the 2D-TW branch bifurcates supercritically from the 1D- 
TW branch. Furthermore the high-amplitude 1D-TWs solutions do not develop the 
strongly asymmetric +-profiles discussed earlier, but instead remain fairly sinusoidal. 
This lack of asymmetry can also be observed in the high-amplitude 2D-TWs where 
the voidage hole does not become localized in space. The bifurcation diagram for the 
second case ( r n l  = 1,m2 = 2) has features that are similar to those described earlier 
with ps-closure given by (8) (see figure 20). 

In order to ascertain the effect of the Richardson-Zaki exponent on the bifurcation 
diagram, we performed calculations corresponding to the conditions of figure 10 
with a different Richardson-Zaki exponent, namely n = 3.35. We found that the 
qualitative features of the bifurcation diagram remained unchanged. We have also 
investigated the effect of particle diameter on the bifurcation behaviour. It is known 
from experiments that bubbling occurs over a wide range of particle sizes so it is 
important to perform calculations for various particle sizes to confirm the generality 
of the results we have obtained. Increasing the particle size leads to an increase in 
the particle terminal velocity, v t ,  and a decrease in the Richardson-Zaki exponent, n, 
and thus a decrease in p .  In practice the particle size may also affect the effective 
mechanical properties of the particulate phase, namely the particle-phase pressure 
and viscosity. However, as discussed by Batchelor (1988) our understanding of the 
mechanics of suspensions is not yet adequate to link the effective properties of the 
suspension to the physical properties of the fluid and the particles. 

We computed bifurcation diagrams for a range of particle diameters (200 - 
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FIGURF 21. Two-dimensional travelling wave solutions corresponding to points C and E in figure 
20. Grey-scale plots of volume fraction of solids for: (a)  solution near (indistinguishable from) 
point C in figurc 20. k ,  = k, = 0.351. N = 9,M = 7. ( b )  Solution corresponding to point E in figure 
20. k ,  = k ,  = 0.328. N = 18,M = 13. 
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-1000pm) taking into consideration the effect of particle size on only uL and n. 
In terms of dimensionless groups this is equivalent to varying !2, c( and n simulta- 
neously. The bifurcation diagrams have been computed for 4 0  slightly less than 4c 
where the value of & decreases with an increase in particle size. Figure 24 shows 
the volume fraction norm, 11, as a function of k ,  for a bed for 300 prn diameter 
glass beads fluidized by air. (Model parameters are shown in the second column of 
table 1.) This figure showing the uniform state, 1D-TW and 2D-TW, illustrates the 
robustness of the bifurcation behaviour. 

8. Discussion 
We have established that the existence of bubble-like solutions for gas-fluidized 

beds is a robust phenomenon, independent of the specific closures used to describe 
the particle-phase pressure and viscosity. The common features obtained with every 
closure scheme analysed are the birth of 1D-TWs from the uniform state and the 
emergence of 2D-TWs from the 1D-TWs. It is also seen that high-amplitude travelling 
wave solutions can coexist with stable uniform states. 

Bubble development has been visualized by Batchelor (1991) as a sequence of four 
stages: a ID-TW evolves from an unstable uniform state in the first stage, and this 
wave develops a two-dimensional structure through an overturning instability in the 
second stage; particles are expelled from a region with smaller-than-average particle 
concentration in the third stage and a steadily rising bubble of clear fluid with a 
steady shape develops in the final stage. 

As the fastest growing instability away from the unstable uniform state is a 1D- 
TW, it is indeed reasonable to expect the bubbles to evolve initially as 1D-TWs 
and subsequently develop two-dimensional structure. In all probability the evolution 
of two-dimensional structure will start before the 1D-TW becomes fully developed. 
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FIGURE 22. Ttvo-dimensional travelling wave solution corresponding to point F in figure 20. 
k ,  = k, = 0.248. N = 27,M = 18. (a)  Volume fraction of solids. ( h )  Streamline plot of gas velocity. 
(c) Streamline plot of solids velocity. 

However, as the growth rates of 1D-TW from the uniform state and the 2D-TW 
from a fully developed 1D-TW are of comparable magnitude, it seems reasonable to 
seek the mechanism behind the second stage of bubble development by examining 
the instability of the Jidly developed 1D-TWs to two-dimensional perturbations. 

Consider the four fully developed 1D-TWs shown in figure 3. The growth rates of 
two-dimensional perturbations of each of these 1D-TWs is presented in figure 4, as a 
function of the transverse wavenumber, k,. The eigenfunctions corresponding to the 
most unstable eigenvalue of each of these four waves are shown in figures 5 to 8. An 
examination of these eigenfunctions reveals several features : 

(i) In every case, the instability of the 1D-TWs takes the form of alternating 
columns of upward and downward moving fluid and solid, which change direction 
every half-wavelength in the lateral direction. 

(ii) In every upward moving column, the region with the highest voidage coincides 
with the region with the highest velocity of upward moving fluid, while the region 
with the highest particle concentration has the highest velocity of upward moving 
solids. In the downward moving columns, the opposite picture holds. 
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FIGURE 24. Bifurcation diagram for 300 pm diameter glass beads. 40 = 0.586. k ,  = 0.185. 

(iii) As the amplitude of the 1D-TW increases, the eigenfunctions for the fluid and 
solid velocities manifest progressively larger lateral movement between the upward 
and downward moving columns. This is accompanied by a decrease in the aspect ratio 
of the cell (= k, /k , )  for which the growth rate of the two-dimensional perturbations 
is largest. 

The extent of lateral movement of fluid and solid between the upward and down- 
ward moving columns is related to the aspect ratio of the cell. Very little lateral 
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movement of fluid and solids is seen in figures 5(c)  and 5 ( d )  simply because of the 
fact that k ,  << k , .  If we examine a case where k ,  w k ,  we see a greater lateral 
migration even for a low-amplitude wave. In a similar fashion, the two-dimensional 
velocity eigenfunctions for the high-amplitude wave in figure 8(a) corresponding to 
a cell with k ,  << k,. do not have a large amount of lateral movement (not shown). 
Thus we can conclude that the amplitude of the 1D-TW determines the aspect ratio 
of the most unstable two-dimensional disturbance, which in turn controls the extent 
of lateral movement of fluid and solid seen in the eigenfunctions. 

We traced the origin of these eigenfunctions back to the uniform state by examining 
the stability of a family of 1D-TWs obtained by varying k,, while holding k ,  fixed. 
We present the case where we start at conditions corresponding to the positive real 
eigenvalue at point g ( k ,  = 0.373, k,  = 0.138) in figure 4; see figure 7 for the 
corresponding eigenfunction. As k ,  is increased while k ,  is held constant at 0.138 the 
amplitude of the corresponding 1D-TW decreases and the real eigenvalue in question 
decreases in magnitude and approaches zero. The eigenvalue passes through zero 
at k ,  = 0.569 and the corresponding eigenfunctions for the solids fraction and fluid 
velocity in the wave frame are shown in figures 25(a) and 25(b) respectively. The solids 
velocity is not shown but is similar to the fluid velocity. As k ,  is increased further the 
1D-TW continues to decrease in amplitude and the eigenvalue recedes in the negative 
half-plane, and remains real. At k, = 0.573 we have a very small-amplitude 1D-TW 
and the corresponding eigenfunctions for the solids fraction and fluid velocity are 
shown in figures 25(cj and 25(d)  respectively. 

At k,  = 0.5735 the amplitude of the 1D-TW becomes zero and we are left with 
examining the stability of the uniform state. At the uniform state the eigenvalue in 
question is still real and the corresponding eigenfunctions of solids fraction and fluid 
velocity are plotted in figures 25(ej and 25cf) respectively. It was found that the real 
eigenvalue at the uniform state is independent of k ,  and the eigenfunction only has 
structure in the x-direction so that it corresponds to a transverse-only mode. This 
mode takes the form of alternating columns of upward and downward moving fluid 
and particles. 

An examination of the other three 1D-TWs shown in figure 3 and the corresponding 
eigenfunctions in figures 5, 6 and 8 reveals a similar picture involving the interaction 
between the 1D-TW and transverse-only mode, i.e. it is the descendant of the 
transverse-only mode of the uniform state which interacts with the 1D-TW and leads 
to the instability of the 1D-TW. 

We also examined the origin of the eigenfunction corresponding to the instability 
of the 1D-TW for the case where p, is a constant value (independent of #) and 
py varies linearly with #. The model parameters are as in figure 23 (see $7). We 
examined the stability of a family of 1D-TWs obtained by varying k ,  while holding 
k ,  fixed at 0.138. The trend described above is still seen and as k ,  is increased while 
k, is held constant the amplitude of the corresponding 1D-TW decreases and the real 
eigenvalue in question decreases in magnitude and approaches zero. The eigenvalue 
passes through zero at k ,  = 0.5733 and the corresponding eigenfunctions for the 
solids fraction and fluid velocity in the wave frame are shown in figures 26(a) and 
26(h), which are very similar to figures 25(a) and 25(h). As k,, is increased further 
the 1D-TW continues to decrease in amplitude and the eigenvalue recedes in the 
negative half-plane and ‘collides’ with another real eigenvalue to become a pair of 
complex-conjugate eigenvalues. 

At k ,  = 0.5734 we again have a very small-amplitude 1D-TW and in figures 26(c) 
and 26(d)  we plot the solids fraction and fluid velocity eigenfunctions corresponding to 
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FIGURY 25. Continuation of the critical eigenfunction, corresponding lo instability of the 1 D-TW, 
back to the uniform state. On the left are grey-scale plots of the 4-eigenfunctions and on the 
right are vector plots of gas-velocity eigenfunctions. (a), (b)  1D-TW with k,  = 0.569,k, = 0.138. 
(c), (d )  1D-TW with k ,  = 0.573,kX = 0.138. (e ) ,  (0 Uniform state with k ,  = 0.5735,k, = 0.138. 
Eigenfunctions are shown in a square box to facilitate comparison. 

the complex-conjugate pair of eigenvalues in question. At k ,  = 0.5735 the amplitude 
of the 1D-TW becomes zero and the solids fraction and fluid velocity eigenfunctions 
of the complex-conjugate pair now at the uniform state are plotted in 26(e) and 
2 6 0 .  The complex-conjugate pair of eigenvalues has structure in both the x- and 
y-directions and corresponds to a mixed mode. This mode takes the form of a 
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FIGURE 26. Continuation of the critical eigenfunction corresponding to instability of the 1D-TW 
back to the uniform state for p,-closure given by equation (9) with ml = 1,mz = 0. On the left are 
grey-scale plots of the 4-eigenfunctions and on the right are vector plots of gas-velocity eigenfunc- 
tions. (a), ( b )  ID-TW with k,  = 0.5733,kX = 0.138. (c), (d)  1D-TW with k,  = 0.5734,kX = 0.138. (e) ,  

Uniform state with k,  = 0.5735,kX = 0.138. 

recirculation in the fluid velocity with a large amount of lateral movement of fluid; 
this lateral movement of material is also seen in the solids velocity (not shown). 

This latter case was examined by Goz (199%) and he also found that it was the 
descendant of the mixed mode of the uniform state that interacts with the 1D-TW 
and leads to the instability of the 1D-TW. Therefore the different closures lead to a 
different origin of the eigenfunction responsible for the instability; this is explained in 
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detail by Goz (1995b). However, for all the cases we have examined we have observed 
that at or beyond the critical conditions (where the real eigenvalue passes through 
zero and moves into the positive half-plane) the corresponding eigenfunctions always 
have the same basic features described above (for figures 5, 6, 7 and 8). 

Batchelor & Nitsche (1991) have analysed the stability of a fluid, whose density is 
sinusoidally modulated in the vertical direction, to two-dimensional perturbations. It 
was assumed the density variation resulted from a variation in the concentration of 
some material in the fluid, and equations describing the evolution of the disturbance 
were formulated in terms of an average velocity and concentration of the diffusing 
material. The eigenfunctions corresponding to the most unstable eigenvalue that they 
obtained are strikingly similar to those observed in the present study, the most notable 
feature being the alternating columns of upward and downward moving material. This 
leads us to conclude that the mechanism through which two-dimensional structure 
evolves in our problem is analogous to the overturning instability discussed by 
Batchelor & Nitsche (1991). 

In order to fully understand the differences between bubbling and non-bubbling 
systems, a bifurcation analysis of the type described here should be carried out 
for S-values corresponding to liquid-fluidized beds. However, no fully developed, 
constant-shape two-dimensional structures were observed by Anderson et al. (1995) 
in their numerical simulation of liquid-fluidized beds. This suggests that the solution 
structure of liquid-fluidized beds may not be completely captured by continuation and 
stability analysis of constant-shape travelling waves of the type analysed here ; these 
should be complemented by extensive transient integrations of the ensemble-averaged 
equations to locate both spatially and temporally oscillating waves. We are in the 
process of developing these computational tools. 
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